
Method Easy Medium Hard Overall
Base Setting 0.62 0.42 0.23 0.40
True Actions 0.61 0.45 0.25 0.41

True Detections 0.62 0.45 0.22 0.40
True Rewards 0.64 0.46 0.21 0.41

Optimal Trajectories 0.65 0.46 0.25 0.43
Detector Score 0.73 0.48 0.26 0.46

Train on 360° Videos 0.66 0.51 0.32 0.47
No Hierarchy 0.38 0.10 0.02 0.15
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Value Learning from Videos
Semantic cues and statistical 
regularities allow humans to 
efficiently navigate in novel 

environments.  

This paper seeks to learn 
such cues from videos.

Instead of training with reinforcement learning or direct interaction, 
we learn semantic cues from object co-occurrence in videos.

Visualizations
Top down map and panorama predictions for nearness to goal
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• Decides where to go next and emits short-term goal
• Builds a topological map [3] that stores values predicted 

by  at different locations in different directions
• Samples most promising direction, and passes  to 

Low-Level Policy
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ΔPose

• Executes actions to achieve short-term 
goal

• Incrementally builds occupancy map 
from depth camera

• Uses Fast-Marching Method for path 
planning to get actions to execute

• Return control on success or failure
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Challenges

Restroom?

• Videos don’t come with action labels

• Goals and intents are not known

• Depicted trajectories may not be optimal

• Dataset not in existing literature

 Action Grounding via an Inverse Model [1]

 Use off-the-shelf Object Detectors to label frames with desired objects

 Use Q-learning to learn optimal behavior from sub-optimal data [2]

 Collected YouTube House Tours Dataset (1387 videos, 119 Hours)

⟹

⟹

⟹

⟹

Code, data, video, models available: 
https://matthewchang.github.io/value-

learning-from-videos/

Ablations

steps to the nearest instance of category c on the meshes from environments in Evideo. This performs
the strongest at OS-SPL of 0.53. This serves as a very competitive ObjectNav policy in the regime
where we allow such strong supervision. Our proposed method that uses significantly less supervision
(in-the-wild videos from YouTube vs. environment scans) is very close to this oracle at 0.50 OS-SPL.

Thus, in conclusion, value functions learned via our approach from YouTube video tours of indoor
spaces are effective and efficient for semantic navigation to objects of interest in novel environments.
They compare favorably to competing reinforcement learning based methods, behavior cloning
approaches, and strong exploration baselines, across all metrics.

4.3 Ablations

We present ablations when testing policies on Etrain in Oracle Stop setting. Note Etrain was only used
to train the inverse model, and not the Q-learning models that we seek to compare. The base setting

from which we ablate corresponds to training f(I, c) on V̂syn with pseudo-labeled actions, Dcoco
based reward labels, and the use of f(I, c) and spatial consistency for sampling short-term goals.
This achieves an OS-SPL of 0.40± 0.02. We summarize results below, table in supplementary.

We notice only a minor impact in performance when a) using true actions as opposed to actions
from inverse model  (0.41 ± 0.03), b) using true detections as opposed to detections from Dcoco
(0.40± 0.03), c) using true reward locations as opposed to frames from which object is visible as
per Dcoco (0.41± 0.03) (the proposed scheme treats frames with high-scoring detections as reward
frames as opposed to true object locations), and d) using optimal trajectories as opposed to noisy
trajectories (0.43± 0.03). Albeit on simulated data, this analysis suggests that there is only a minor
degradation in performance when using inferred estimates in place of ground truth values.

Perhaps, a more interesting observation is that there is a solid improvement when we additionally use
Dcoco score to sample short-term goals (0.46±0.03). We believe use of Dcoco produces a more peak-y
directional signal when the object is in direct sight, where as differences in f(I, c) are more useful
at long-range. Secondly, we found that use of 360� images at training time also leads to a strong
improvement (0.47 ± 0.02). We believe use of 360� images at training time prevents perceptual

aliasing during Q-learning. In the base setting, Q-values can erroneously propagate via an image
that looks directly at a wall. Presence of 360� context prevents this. While this is useful for future
research, we stick with the base setting as we are limited by what videos we could find on YouTube.

T1

T3

T2

Gnear

Gfar

SPL (Policy 

Evaluation): 0.34

Gnear

Gfar

SPL (Q-Learning): 0.88

Is action pseudo-labeling necessary? As discussed in Section 3.1, we
favored use of Q-learning over action agnostic methods, such as policy
evaluation, as this allows us to learn optimal value functions as opposed
to value of the policy depicted in the video. To test this, we train different
methods in the branching environment as shown in the figure on the right
(top). Desired goal locations are labeled by Gnear and Gfar. We investigate
the learned behavior at the branch point B, by initializing the agent at
random locations in the circle S. Desired behavior is for agent to reach
Gnear. In departure from all other experiments, here we train and test in
the same branching environment. This is a deliberate choice as we seek
to understand how different methods interpret the training data.

Videos in this branching environment are a 50 � 49.5 � 0.5% mix of trajectories T1, T2, and T3.
T1 and T2 are sub-optimal trajectories to reach Gnear and Gfar respectively, while T3 is the optimal
trajectory to reach Gnear. The policy evaluation method doesn’t use any action labels, and correctly
infers the values for the policy from which videos are sampled. As expected, this causes it to pursue
the sub-optimal goal (red paths in bottom figure). In contrast, Q-learning with pseudo-labeled actions,
estimates the optimal value function, and consistently reaches Gnear (green paths).

5 Discussion

We presented a technique to enable learning of semantic cues for finding objects in novel environments
from in-the-wild YouTube videos. Our proposed technique employs Q-learning on pseudo-labeled
transition quadruples. This allows learning of effective semantic cues even in the absence of action
grounding and goal-directed optimal behavior. When coupled with a hierarchical navigation policy,
these cues convey the agent to desired objects more effectively than competitive exploration baselines
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•Inverse model and detector do not hurt performance significantly
•Detector at test time helps for close objects, panorama helps for far objects
•Q-Learning outperforms simple policy evaluation for challenging environments
•Hierarchical policy is a major factor in strong performance

Evaluation

•Stronger than behavior cloning on videos 
and BC + RL

•Stronger than even RL methods trained 
with dense rewards with 250x more 
interaction samples and 6x more 
environments with direct interaction access

•Better than strong exploration baselines
•Improves performance when combined 
with strongly supervised model
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